Exponentiated Gradient Methods for Reinforcement Learning
نویسندگان
چکیده
This paper introduces and evaluates a natural extension of linear exponentiated gradient methods that makes them applicable to reinforcement learning problems. Just as these methods speed up supervised learning, we nd that they can also increase the ef-ciency of reinforcement learning. Comparisons are made with conventional reinforcement learning methods on two test problems using CMAC function approximators and replacing traces. On a small prediction task, exponentiated gradient methods showed no improvement, but on a larger control task (Mountain Car) they improved the learning speed by approximately 25%. A more detailed analysis suggests that the diierence may be due to the distribution of irrelevant features.
منابع مشابه
Empirical Comparison of Gradient Descent andExponentiated Gradient Descent in
This report describes a series of results using the exponentiated gradient descent (EG) method recently proposed by Kivinen and Warmuth. Prior work is extended by comparing speed of learning on a nonstationary problem and on an extension to backpropagation networks. Most signi cantly, we present an extension of the EG method to temporal-di erence and reinforcement learning. This extension is co...
متن کاملMatrix Exponentiated Gradient Updates for On-line Learning and Bregman Projection
We address the problem of learning a symmetric positive definite matrix. The central issue is to design parameter updates that preserve positive definiteness. Our updates are motivated with the von Neumann divergence. Rather than treating the most general case, we focus on two key applications that exemplify our methods: on-line learning with a simple square loss, and finding a symmetric positi...
متن کاملExponentiated Gradient Exploration for Active Learning
Active learning strategies respond to the costly labeling task in a supervised classification by selecting the most useful unlabeled examples in training a predictive model. Many conventional active learning algorithms focus on refining the decision boundary, rather than exploring new regions that can be more informative. In this setting, we propose a sequential algorithm named exponentiated gr...
متن کاملConvergence of exponentiated gradient algorithms
This paper studies three related algorithms: the (traditional) Gradient Descent (GD) Algorithm, the Exponentiated Gradient Algorithm with Positive and Negative weights (EG algorithm) and the Exponentiated Gradient Algorithm with Unnormalized Positive and Negative weights (EGU algorithm). These algorithms have been previously analyzed using the “mistake-bound framework” in the computational lear...
متن کاملAdaptivity and Optimism: An Improved Exponentiated Gradient Algorithm
We present an adaptive variant of the exponentiated gradient algorithm. Leveraging the optimistic learning framework of Rakhlin & Sridharan (2012), we obtain regret bounds that in the learning from experts setting depend on the variance and path length of the best expert, improving on results by Hazan & Kale (2008) and Chiang et al. (2012), and resolving an open problem posed by Kale (2012). Ou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997